Blog

数学之美番外篇:平凡而又神奇的贝叶斯方法

概率论只不过是把常识用数学公式表达了出来。 ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本书,名叫贝叶斯方法。当时数学系的课程还没有学到概率统计。我心想,一个方法能够专门写出一本书来,肯定很牛逼。后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法。 ——题记 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。贝叶斯方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用。

一直以来伴随我的一些学习习惯(三):阅读方法

2. 根据主题来查阅资料,而不是根据资料来查阅主题。以前读书的时候是一本一本的读,眼里看到的是一本一本的书,现在则是一章、甚至一节一节的读,眼中看到的不是一本一本的书,而是一堆一堆的章节,一个一个的知识主题,按照主题来阅读,你会发现读的时候不再是老老实实地一本书看完看另一本,而是非常频繁地从一本书跳到另一本书,从一处资料跳到另一处资料,从而来获得多个不同的人对同一个主题是如何讲解的。比如最近我发现在看蒙特卡罗算法时就查了十来处资料,其中有三四篇 paper 和六七本书;这是因为即便是经典的书,你也不能指望它对其中每一个主题的介绍都是尽善尽美的,有些书对某个主题(知识点)的介绍比较到位,有些书则对另一些知识点介绍得比较到位。而有时候一篇紧凑的 paper 比一本书上讲得还要好。我硬盘里面的书按主题分类,每个主题下面都有一堆书,当我需要学习某个主题的知识时(譬如贝叶斯学习或者神经网络),我会把里面涉及这个主题的书都翻开来,索引到相关章节,然后挑讲得好的看。那么,如何判断一个资料是好资料还是坏资料呢?

机器学习与人工智能学习资源导引

我经常在 TopLanguage 讨论组上推荐一些书籍,也经常问里面的牛人们搜罗一些有关的资料,人工智能、机器学习、自然语言处理、知识发现(特别地,数据挖掘)、信息检索 这些无疑是 CS 领域最好玩的分支了(也是互相紧密联系的),这里将最近有关机器学习和人工智能相关的一些学习资源归一个类